Expand source code
from copy import deepcopy
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.linear_model import LinearRegression, RidgeCV, Ridge, ElasticNet, ElasticNetCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_X_y, check_array, _check_sample_weight
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score
from tqdm import tqdm
from sklearn.preprocessing import StandardScaler
from collections import defaultdict
import imodels

from sklearn.base import RegressorMixin, ClassifierMixin


class MarginalShrinkageLinearModel(BaseEstimator):
    """Linear model that shrinks towards the marginal effects of each feature."""

    def __str__(self):
        return (
            repr(self)
            .replace("MarginalShrinkageLinearModel", "MSLM")
            .replace("Regressor", "Reg")
            .replace("Classifier", "Clf")
        )

    def __init__(
        self,
        est_marginal_name="ridge",
        est_main_name="ridge",
        marginal_divide_by_d=True,
        marginal_sign_constraint=False,
        alphas=np.logspace(-3, 5, num=9).tolist(),
        elasticnet_ratio=0.5,
        random_state=None,
    ):
        """
        Params
        ------
        est_marginal_name : str
            Name of estimator to use for marginal effects (marginal regression)
            If "None", then assume marginal effects are zero (standard Ridge)
        est_main_name : str
            Name of estimator to use for main effects
            If "None", then assume marginal effects are zero (standard Ridge)
            "ridge", "lasso", "elasticnet"
        marginal_divide_by_d : bool
            If True, then divide marginal effects by n_features
        marginal_sign_constraint : bool
            If True, then constrain main effects to be same sign as marginal effects
        alphas: Tuple[float]
            Alphas to try for regularized regression (only main, not marginal)
        elasticnet_ratio : float
            If using elasticnet, Ratio of l1 to l2 penalty for elastic net
        random_state : int
            Random seed
        """
        self.random_state = random_state
        self.est_marginal_name = est_marginal_name
        self.est_main_name = est_main_name
        self.marginal_divide_by_d = marginal_divide_by_d
        self.marginal_sign_constraint = marginal_sign_constraint
        self.elasticnet_ratio = elasticnet_ratio
        if alphas is None:
            alphas = np.logspace(-3, 5, num=9).tolist()
        elif isinstance(alphas, float) or isinstance(alphas, int):
            alphas = [alphas]
        self.alphas = alphas

    def fit(self, X, y, sample_weight=None):
        # checks
        X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
        if isinstance(self, ClassifierMixin):
            check_classification_targets(y)
            self.classes_, y = np.unique(y, return_inverse=True)

        # preprocess X and y
        self.scalar_X_ = StandardScaler()
        X = self.scalar_X_.fit_transform(X)

        if isinstance(self, RegressorMixin):
            self.scalar_y_ = StandardScaler()
            y = self.scalar_y_.fit_transform(y.reshape(-1, 1)).squeeze()

        # fit marginal
        self.coef_marginal_ = self._fit_marginal(X, y, sample_weight)

        # fit main
        self.est_main_ = self._fit_main(
            X, y, sample_weight, self.coef_marginal_)

        return self

    def _fit_marginal(self, X, y, sample_weight):
        # initialize marginal estimator
        ALPHAS_MARGINAL = np.logspace(-1, 3, num=5).tolist()
        est_marginal = self._get_est_from_name(
            self.est_marginal_name,
            alphas=ALPHAS_MARGINAL,
            marginal_sign_constraint=False,
        )

        # fit marginal estimator to each feature
        if est_marginal is None:
            coef_marginal_ = np.zeros(X.shape[1])
        else:
            coef_marginal_ = []
            for i in range(X.shape[1]):
                est_marginal.fit(X[:, i].reshape(-1, 1), y,
                                 sample_weight=sample_weight)
                coef_marginal_.append(deepcopy(est_marginal.coef_))
            coef_marginal_ = np.vstack(coef_marginal_).squeeze()

        # evenly divide effects among features
        if self.marginal_divide_by_d:
            coef_marginal_ /= X.shape[1]

        return coef_marginal_

    def _fit_main(self, X, y, sample_weight, coef_marginal_):
        # constrain main effects to be same sign as marginal effects by flipping sign
        # of X appropriately and refitting with a non-negative least squares
        est_main_ = self._get_est_from_name(
            self.est_main_name,
            alphas=self.alphas,
            marginal_sign_constraint=self.marginal_sign_constraint,
        )

        if self.marginal_sign_constraint:
            assert self.est_marginal_name is not None, "must have marginal effects"
            coef_signs = np.sign(coef_marginal_)
            X = X * coef_signs
            est_main_.fit(X, y, sample_weight=sample_weight)
            est_main_.coef_ = est_main_.coef_ * coef_signs
            # check that signs do not disagree
            coef_final_signs = np.sign(est_main_.coef_)
            assert np.all(
                (coef_final_signs == coef_signs) | (coef_final_signs == 0)
            ), "signs should agree but" + str(np.sign(est_main_.coef_), coef_signs)
        elif est_main_ is None:
            # fit dummy clf and override coefs
            est_main_ = ElasticNetCV(fit_intercept=False)
            est_main_.fit(X[:5], y[:5])
            est_main_.coef_ = coef_marginal_
        else:
            # fit main estimator
            # predicting residuals is the same as setting a prior over coef_marginal
            # because we do solve change of variables ridge(prior = coef = coef - coef_marginal)
            preds_marginal = X @ coef_marginal_
            residuals = y - preds_marginal
            est_main_.fit(X, residuals, sample_weight=sample_weight)
            est_main_.coef_ = est_main_.coef_ + coef_marginal_
        return est_main_

    def _get_est_from_name(self, est_name, alphas, marginal_sign_constraint):
        L1_RATIOS = {
            "ridge": 1e-6,
            "lasso": 1,
            "elasticnet": self.elasticnet_ratio,
        }
        if est_name not in L1_RATIOS:
            return None
        else:
            if est_name == "ridge" and not marginal_sign_constraint:
                # this implementation is better than ElasticNetCV with l1_ratio close to 0
                return RidgeCV(
                    alphas=alphas,
                    fit_intercept=False,
                )
            return ElasticNetCV(
                l1_ratio=L1_RATIOS[est_name],
                alphas=alphas,
                max_iter=10000,
                fit_intercept=False,
                positive=bool(marginal_sign_constraint),
            )

    def predict_proba(self, X):
        X = self.scalar_X_.transform(X)
        return self.est_main_.predict_proba(X)

    def predict(self, X):
        X = self.scalar_X_.transform(X)
        pred = self.est_main_.predict(X)
        return self.scalar_y_.inverse_transform(pred.reshape(-1, 1)).squeeze()


class MarginalShrinkageLinearModelRegressor(
    MarginalShrinkageLinearModel, RegressorMixin
):
    ...


# class MarginalShrinkageLinearModelClassifier(
#     MarginalShrinkageLinearModel, ClassifierMixin
# ):
#     ...


class MarginalLinearModel(BaseEstimator):
    """Linear model that only fits marginal effects of each feature.
    """

    def __init__(self, alpha=1.0, l1_ratio=0.5, max_iter=1000, random_state=None):
        '''Arguments are passed to sklearn.linear_model.ElasticNet
        '''
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.max_iter = max_iter
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        # checks
        X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
        if isinstance(self, ClassifierMixin):
            check_classification_targets(y)
            self.classes_, y = np.unique(y, return_inverse=True)

        # fit marginal estimator to each feature
        coef_marginal_ = []
        for i in range(X.shape[1]):
            est_marginal = ElasticNet(alpha=self.alpha, l1_ratio=self.l1_ratio,
                                      max_iter=self.max_iter, random_state=self.random_state)
            est_marginal.fit(X[:, i].reshape(-1, 1), y,
                             sample_weight=sample_weight)
            coef_marginal_.append(deepcopy(est_marginal.coef_))
        coef_marginal_ = np.vstack(coef_marginal_).squeeze()

        self.coef_ = coef_marginal_ / X.shape[1]
        self.alpha_ = self.alpha

        return self

    def predict_proba(self, X):
        X = check_array(X, accept_sparse=False, dtype=None)
        return X @ self.coef_

    def predict(self, X):
        probs = self.predict_proba(X)
        if isinstance(self, ClassifierMixin):
            return np.argmax(probs, axis=1)
        else:
            return probs


class MarginalLinearRegressor(MarginalLinearModel, RegressorMixin):
    ...


class MarginalLinearClassifier(MarginalLinearModel, ClassifierMixin):
    ...


# if __name__ == '__main__':
#     X, y = imodels.get_clean_dataset('heart')
#     X_train, X_test, y_train, y_test = train_test_split(
#         X, y, random_state=42, test_size=0.2)
#     m = MarginalLinearModelRegressor()

#     m.fit(X_train, y_train)
#     print(m.coef_)
#     print(m.predict(X_test))
#     print(m.score(X_test, y_test))

if __name__ == "__main__":
    # X, y, feature_names = imodels.get_clean_dataset("heart")
    X, y, feature_names = imodels.get_clean_dataset(
        **imodels.util.data_util.DSET_KWARGS["california_housing"]
    )

    # scale the data
    X = StandardScaler().fit_transform(X)
    y = StandardScaler().fit_transform(y.reshape(-1, 1)).squeeze()

    print("shapes", X.shape, y.shape, "nunique", np.unique(y).size)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, random_state=42, test_size=0.2
    )

    coefs = []
    alphas = (0.1, 1, 10, 100, 1000, 10000)  # (0.1, 1, 10, 100, 1000, 10000)
    # alphas = 10000
    kwargs = dict(
        random_state=42,
        alphas=alphas,
    )
    results = defaultdict(list)
    for m in [
        # MarginalShrinkageLinearModelRegressor(**kwargs),
        # MarginalShrinkageLinearModelRegressor(
        #     est_marginal_name=None, **kwargs),
        # MarginalShrinkageLinearModelRegressor(
        #     est_main_name=None,
        #     **kwargs,
        # ),
        # MarginalShrinkageLinearModelRegressor(
        #     est_marginal_name="ridge",
        #     est_main_name="ridge",
        #     marginal_sign_constraint=True,
        #     **kwargs,
        # ),
        # MarginalShrinkageLinearModelRegressor(
        #     est_marginal_name=None, est_main_name="lasso", **kwargs
        # ),
        # MarginalShrinkageLinearModelRegressor(
        #     est_marginal_name="ridge",
        #     est_main_name="lasso",
        #     marginal_sign_constraint=True,
        #     **kwargs,
        # ),
        MarginalLinearRegressor(alpha=1.0),
        RidgeCV(alphas=alphas, fit_intercept=False),
    ]:
        results["model_name"].append(str(m))
        m.fit(X_train, y_train)

        # check roc auc score
        if isinstance(m, ClassifierMixin):
            results["train_roc"].append(
                roc_auc_score(y_train, m.predict_proba(X_train)[:, 1])
            )
            results["test_roc"].append(
                roc_auc_score(y_test, m.predict_proba(X_test)[:, 1])
            )
            results["acc_train"].append(
                accuracy_score(y_train, m.predict(X_train)))
            results["acc_test"].append(
                accuracy_score(y_test, m.predict(X_test)))
        else:
            y_pred = m.predict(X_test)
            results["train_mse"].append(
                np.mean((y_train - m.predict(X_train)) ** 2))
            results["test_mse"].append(np.mean((y_test - y_pred) ** 2))
            results["train_r2"].append(m.score(X_train, y_train))
            results["test_r2"].append(m.score(X_test, y_test))

        if isinstance(m, MarginalShrinkageLinearModelRegressor):
            lin = m.est_main_
        else:
            lin = m

        coefs.append(deepcopy(lin.coef_))
        print("alpha best", lin.alpha_)

    # diffs = pd.DataFrame({str(i): coefs[i] for i in range(len(coefs))})
    # diffs["diff 0 - 1"] = diffs["0"] - diffs["1"]
    # diffs["diff 1 - 2"] = diffs["1"] - diffs["2"]
    # print(diffs)

    # don't round strings
    with pd.option_context(
        "display.max_rows", None, "display.max_columns", None, "display.width", 1000
    ):
        print(pd.DataFrame(results).round(3))

Classes

class MarginalLinearClassifier (alpha=1.0, l1_ratio=0.5, max_iter=1000, random_state=None)

Linear model that only fits marginal effects of each feature.

Arguments are passed to sklearn.linear_model.ElasticNet

Expand source code
class MarginalLinearClassifier(MarginalLinearModel, ClassifierMixin):
    ...

Ancestors

  • MarginalLinearModel
  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester
  • sklearn.base.ClassifierMixin

Methods

def set_score_request(self: MarginalLinearClassifier, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> MarginalLinearClassifier

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in score.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance

Inherited members

class MarginalLinearModel (alpha=1.0, l1_ratio=0.5, max_iter=1000, random_state=None)

Linear model that only fits marginal effects of each feature.

Arguments are passed to sklearn.linear_model.ElasticNet

Expand source code
class MarginalLinearModel(BaseEstimator):
    """Linear model that only fits marginal effects of each feature.
    """

    def __init__(self, alpha=1.0, l1_ratio=0.5, max_iter=1000, random_state=None):
        '''Arguments are passed to sklearn.linear_model.ElasticNet
        '''
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.max_iter = max_iter
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        # checks
        X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
        if isinstance(self, ClassifierMixin):
            check_classification_targets(y)
            self.classes_, y = np.unique(y, return_inverse=True)

        # fit marginal estimator to each feature
        coef_marginal_ = []
        for i in range(X.shape[1]):
            est_marginal = ElasticNet(alpha=self.alpha, l1_ratio=self.l1_ratio,
                                      max_iter=self.max_iter, random_state=self.random_state)
            est_marginal.fit(X[:, i].reshape(-1, 1), y,
                             sample_weight=sample_weight)
            coef_marginal_.append(deepcopy(est_marginal.coef_))
        coef_marginal_ = np.vstack(coef_marginal_).squeeze()

        self.coef_ = coef_marginal_ / X.shape[1]
        self.alpha_ = self.alpha

        return self

    def predict_proba(self, X):
        X = check_array(X, accept_sparse=False, dtype=None)
        return X @ self.coef_

    def predict(self, X):
        probs = self.predict_proba(X)
        if isinstance(self, ClassifierMixin):
            return np.argmax(probs, axis=1)
        else:
            return probs

Ancestors

  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester

Subclasses

Methods

def fit(self, X, y, sample_weight=None)
Expand source code
def fit(self, X, y, sample_weight=None):
    # checks
    X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
    sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
    if isinstance(self, ClassifierMixin):
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)

    # fit marginal estimator to each feature
    coef_marginal_ = []
    for i in range(X.shape[1]):
        est_marginal = ElasticNet(alpha=self.alpha, l1_ratio=self.l1_ratio,
                                  max_iter=self.max_iter, random_state=self.random_state)
        est_marginal.fit(X[:, i].reshape(-1, 1), y,
                         sample_weight=sample_weight)
        coef_marginal_.append(deepcopy(est_marginal.coef_))
    coef_marginal_ = np.vstack(coef_marginal_).squeeze()

    self.coef_ = coef_marginal_ / X.shape[1]
    self.alpha_ = self.alpha

    return self
def predict(self, X)
Expand source code
def predict(self, X):
    probs = self.predict_proba(X)
    if isinstance(self, ClassifierMixin):
        return np.argmax(probs, axis=1)
    else:
        return probs
def predict_proba(self, X)
Expand source code
def predict_proba(self, X):
    X = check_array(X, accept_sparse=False, dtype=None)
    return X @ self.coef_
def set_fit_request(self: MarginalLinearModel, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> MarginalLinearModel

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in fit.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance
class MarginalLinearRegressor (alpha=1.0, l1_ratio=0.5, max_iter=1000, random_state=None)

Linear model that only fits marginal effects of each feature.

Arguments are passed to sklearn.linear_model.ElasticNet

Expand source code
class MarginalLinearRegressor(MarginalLinearModel, RegressorMixin):
    ...

Ancestors

  • MarginalLinearModel
  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester
  • sklearn.base.RegressorMixin

Methods

def set_score_request(self: MarginalLinearRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> MarginalLinearRegressor

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in score.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance

Inherited members

class MarginalShrinkageLinearModel (est_marginal_name='ridge', est_main_name='ridge', marginal_divide_by_d=True, marginal_sign_constraint=False, alphas=[0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0], elasticnet_ratio=0.5, random_state=None)

Linear model that shrinks towards the marginal effects of each feature.

Params

est_marginal_name : str Name of estimator to use for marginal effects (marginal regression) If "None", then assume marginal effects are zero (standard Ridge) est_main_name : str Name of estimator to use for main effects If "None", then assume marginal effects are zero (standard Ridge) "ridge", "lasso", "elasticnet" marginal_divide_by_d : bool If True, then divide marginal effects by n_features marginal_sign_constraint : bool If True, then constrain main effects to be same sign as marginal effects alphas: Tuple[float] Alphas to try for regularized regression (only main, not marginal) elasticnet_ratio : float If using elasticnet, Ratio of l1 to l2 penalty for elastic net random_state : int Random seed

Expand source code
class MarginalShrinkageLinearModel(BaseEstimator):
    """Linear model that shrinks towards the marginal effects of each feature."""

    def __str__(self):
        return (
            repr(self)
            .replace("MarginalShrinkageLinearModel", "MSLM")
            .replace("Regressor", "Reg")
            .replace("Classifier", "Clf")
        )

    def __init__(
        self,
        est_marginal_name="ridge",
        est_main_name="ridge",
        marginal_divide_by_d=True,
        marginal_sign_constraint=False,
        alphas=np.logspace(-3, 5, num=9).tolist(),
        elasticnet_ratio=0.5,
        random_state=None,
    ):
        """
        Params
        ------
        est_marginal_name : str
            Name of estimator to use for marginal effects (marginal regression)
            If "None", then assume marginal effects are zero (standard Ridge)
        est_main_name : str
            Name of estimator to use for main effects
            If "None", then assume marginal effects are zero (standard Ridge)
            "ridge", "lasso", "elasticnet"
        marginal_divide_by_d : bool
            If True, then divide marginal effects by n_features
        marginal_sign_constraint : bool
            If True, then constrain main effects to be same sign as marginal effects
        alphas: Tuple[float]
            Alphas to try for regularized regression (only main, not marginal)
        elasticnet_ratio : float
            If using elasticnet, Ratio of l1 to l2 penalty for elastic net
        random_state : int
            Random seed
        """
        self.random_state = random_state
        self.est_marginal_name = est_marginal_name
        self.est_main_name = est_main_name
        self.marginal_divide_by_d = marginal_divide_by_d
        self.marginal_sign_constraint = marginal_sign_constraint
        self.elasticnet_ratio = elasticnet_ratio
        if alphas is None:
            alphas = np.logspace(-3, 5, num=9).tolist()
        elif isinstance(alphas, float) or isinstance(alphas, int):
            alphas = [alphas]
        self.alphas = alphas

    def fit(self, X, y, sample_weight=None):
        # checks
        X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
        if isinstance(self, ClassifierMixin):
            check_classification_targets(y)
            self.classes_, y = np.unique(y, return_inverse=True)

        # preprocess X and y
        self.scalar_X_ = StandardScaler()
        X = self.scalar_X_.fit_transform(X)

        if isinstance(self, RegressorMixin):
            self.scalar_y_ = StandardScaler()
            y = self.scalar_y_.fit_transform(y.reshape(-1, 1)).squeeze()

        # fit marginal
        self.coef_marginal_ = self._fit_marginal(X, y, sample_weight)

        # fit main
        self.est_main_ = self._fit_main(
            X, y, sample_weight, self.coef_marginal_)

        return self

    def _fit_marginal(self, X, y, sample_weight):
        # initialize marginal estimator
        ALPHAS_MARGINAL = np.logspace(-1, 3, num=5).tolist()
        est_marginal = self._get_est_from_name(
            self.est_marginal_name,
            alphas=ALPHAS_MARGINAL,
            marginal_sign_constraint=False,
        )

        # fit marginal estimator to each feature
        if est_marginal is None:
            coef_marginal_ = np.zeros(X.shape[1])
        else:
            coef_marginal_ = []
            for i in range(X.shape[1]):
                est_marginal.fit(X[:, i].reshape(-1, 1), y,
                                 sample_weight=sample_weight)
                coef_marginal_.append(deepcopy(est_marginal.coef_))
            coef_marginal_ = np.vstack(coef_marginal_).squeeze()

        # evenly divide effects among features
        if self.marginal_divide_by_d:
            coef_marginal_ /= X.shape[1]

        return coef_marginal_

    def _fit_main(self, X, y, sample_weight, coef_marginal_):
        # constrain main effects to be same sign as marginal effects by flipping sign
        # of X appropriately and refitting with a non-negative least squares
        est_main_ = self._get_est_from_name(
            self.est_main_name,
            alphas=self.alphas,
            marginal_sign_constraint=self.marginal_sign_constraint,
        )

        if self.marginal_sign_constraint:
            assert self.est_marginal_name is not None, "must have marginal effects"
            coef_signs = np.sign(coef_marginal_)
            X = X * coef_signs
            est_main_.fit(X, y, sample_weight=sample_weight)
            est_main_.coef_ = est_main_.coef_ * coef_signs
            # check that signs do not disagree
            coef_final_signs = np.sign(est_main_.coef_)
            assert np.all(
                (coef_final_signs == coef_signs) | (coef_final_signs == 0)
            ), "signs should agree but" + str(np.sign(est_main_.coef_), coef_signs)
        elif est_main_ is None:
            # fit dummy clf and override coefs
            est_main_ = ElasticNetCV(fit_intercept=False)
            est_main_.fit(X[:5], y[:5])
            est_main_.coef_ = coef_marginal_
        else:
            # fit main estimator
            # predicting residuals is the same as setting a prior over coef_marginal
            # because we do solve change of variables ridge(prior = coef = coef - coef_marginal)
            preds_marginal = X @ coef_marginal_
            residuals = y - preds_marginal
            est_main_.fit(X, residuals, sample_weight=sample_weight)
            est_main_.coef_ = est_main_.coef_ + coef_marginal_
        return est_main_

    def _get_est_from_name(self, est_name, alphas, marginal_sign_constraint):
        L1_RATIOS = {
            "ridge": 1e-6,
            "lasso": 1,
            "elasticnet": self.elasticnet_ratio,
        }
        if est_name not in L1_RATIOS:
            return None
        else:
            if est_name == "ridge" and not marginal_sign_constraint:
                # this implementation is better than ElasticNetCV with l1_ratio close to 0
                return RidgeCV(
                    alphas=alphas,
                    fit_intercept=False,
                )
            return ElasticNetCV(
                l1_ratio=L1_RATIOS[est_name],
                alphas=alphas,
                max_iter=10000,
                fit_intercept=False,
                positive=bool(marginal_sign_constraint),
            )

    def predict_proba(self, X):
        X = self.scalar_X_.transform(X)
        return self.est_main_.predict_proba(X)

    def predict(self, X):
        X = self.scalar_X_.transform(X)
        pred = self.est_main_.predict(X)
        return self.scalar_y_.inverse_transform(pred.reshape(-1, 1)).squeeze()

Ancestors

  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester

Subclasses

Methods

def fit(self, X, y, sample_weight=None)
Expand source code
def fit(self, X, y, sample_weight=None):
    # checks
    X, y = check_X_y(X, y, accept_sparse=False, multi_output=False)
    sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
    if isinstance(self, ClassifierMixin):
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)

    # preprocess X and y
    self.scalar_X_ = StandardScaler()
    X = self.scalar_X_.fit_transform(X)

    if isinstance(self, RegressorMixin):
        self.scalar_y_ = StandardScaler()
        y = self.scalar_y_.fit_transform(y.reshape(-1, 1)).squeeze()

    # fit marginal
    self.coef_marginal_ = self._fit_marginal(X, y, sample_weight)

    # fit main
    self.est_main_ = self._fit_main(
        X, y, sample_weight, self.coef_marginal_)

    return self
def predict(self, X)
Expand source code
def predict(self, X):
    X = self.scalar_X_.transform(X)
    pred = self.est_main_.predict(X)
    return self.scalar_y_.inverse_transform(pred.reshape(-1, 1)).squeeze()
def predict_proba(self, X)
Expand source code
def predict_proba(self, X):
    X = self.scalar_X_.transform(X)
    return self.est_main_.predict_proba(X)
def set_fit_request(self: MarginalShrinkageLinearModel, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> MarginalShrinkageLinearModel

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in fit.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance
class MarginalShrinkageLinearModelRegressor (est_marginal_name='ridge', est_main_name='ridge', marginal_divide_by_d=True, marginal_sign_constraint=False, alphas=[0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0], elasticnet_ratio=0.5, random_state=None)

Linear model that shrinks towards the marginal effects of each feature.

Params

est_marginal_name : str Name of estimator to use for marginal effects (marginal regression) If "None", then assume marginal effects are zero (standard Ridge) est_main_name : str Name of estimator to use for main effects If "None", then assume marginal effects are zero (standard Ridge) "ridge", "lasso", "elasticnet" marginal_divide_by_d : bool If True, then divide marginal effects by n_features marginal_sign_constraint : bool If True, then constrain main effects to be same sign as marginal effects alphas: Tuple[float] Alphas to try for regularized regression (only main, not marginal) elasticnet_ratio : float If using elasticnet, Ratio of l1 to l2 penalty for elastic net random_state : int Random seed

Expand source code
class MarginalShrinkageLinearModelRegressor(
    MarginalShrinkageLinearModel, RegressorMixin
):
    ...

Ancestors

  • MarginalShrinkageLinearModel
  • sklearn.base.BaseEstimator
  • sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin
  • sklearn.utils._metadata_requests._MetadataRequester
  • sklearn.base.RegressorMixin

Methods

def set_score_request(self: MarginalShrinkageLinearModelRegressor, *, sample_weight: Union[bool, ForwardRef(None), str] = '$UNCHANGED$') ‑> MarginalShrinkageLinearModelRegressor

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version: 1.3

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.

Parameters

sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for sample_weight parameter in score.

Returns

self : object
The updated object.
Expand source code
def func(**kw):
    """Updates the request for provided parameters

    This docstring is overwritten below.
    See REQUESTER_DOC for expected functionality
    """
    if not _routing_enabled():
        raise RuntimeError(
            "This method is only available when metadata routing is enabled."
            " You can enable it using"
            " sklearn.set_config(enable_metadata_routing=True)."
        )

    if self.validate_keys and (set(kw) - set(self.keys)):
        raise TypeError(
            f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments"
            f" are: {set(self.keys)}"
        )

    requests = instance._get_metadata_request()
    method_metadata_request = getattr(requests, self.name)

    for prop, alias in kw.items():
        if alias is not UNCHANGED:
            method_metadata_request.add_request(param=prop, alias=alias)
    instance._metadata_request = requests

    return instance

Inherited members